If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2+8X-128=0
We add all the numbers together, and all the variables
2X^2+8X-128=0
a = 2; b = 8; c = -128;
Δ = b2-4ac
Δ = 82-4·2·(-128)
Δ = 1088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1088}=\sqrt{64*17}=\sqrt{64}*\sqrt{17}=8\sqrt{17}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{17}}{2*2}=\frac{-8-8\sqrt{17}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{17}}{2*2}=\frac{-8+8\sqrt{17}}{4} $
| 2(500-2y)+4y=1000 | | (2x-4)/5=3x+2 | | 16b-8b=(16-8)b | | 1/2(p-4)=5+1/2 | | 25-(3x+5)=(x+8)+x | | 17^x+1=24 | | 4(x-0.75)=15 | | Y=s+7 | | -9+4(5+8x)-8=2(9x-7)+5x | | 7.x+10=52 | | 4^3b-1=1/64 | | 2a=2a+30 | | (X)-(8/11x-5)=41 | | 14/5=7/5x | | 34x-42=124 | | 251.33=x-(x*0.29) | | x*1.1=10 | | 590.54=x-(x*0.19) | | 590.54=x+(x*0.19) | | 3x+200=12x-7 | | 95.8+x=180 | | -d^2+4d+3=0 | | 20/x=0.5 | | 8x8+3x=70 | | 4x+63=87 | | 16=9.5x+26 | | -2+14x+110=0 | | 5x+24=8x+12 | | V=(8-2x)*(15-2x)*x | | 52=z+16 | | 2x-10=4x-20+10 | | 3x+8=-34+4x |